新型含铝Fe-Cr合金的热变形行为及热加工图
Hot Deformation Behavior and Processing Map of Novel Fe-Cr Alloy Containing Aluminum
- 2024年44卷第3期 页码:359-363
纸质出版日期: 2024-03-20
DOI: 10.15980/j.tzzz.2024.03.013
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2024-03-20 ,
扫 描 看 全 文
孙胜英,孙锦超,梁顺星,等. 新型含铝Fe-Cr合金的热变形行为及热加工图[J]. 特种铸造及有色合金,2024,44(3):359-363.
SUN S Y,SUN J C,LIANG S X,et al. Hot deformation behavior and processing map of novel Fe-Cr alloy containing aluminum[J]. Special Casting & Nonferrous Alloys,2024,44(3):359-363.
采用Gleeble-3500热模拟试验机对Fe-18Ni-12Cr-3Al合金进行压缩试验,其变形温度为925~1 175 ℃、应变速率为0.01~10 s
-1
。分析了合金真应力-真应变曲线,建立了本构方程及热加工图,并结合
<math id="M1"><mi>θ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=55717994&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=55717982&type=
1.60866666
2.37066650
-
<math id="M2"><mi>σ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=55717997&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=55717985&type=
1.60866666
2.45533323
曲线上的拐点,采用拐点法研究其动态再结晶的临界条件。结果表明,Fe-18Ni-12Cr-3Al合金应力随着应变速率增加和变形温度降低而升高,发生动态再结晶的临界应力和峰值应力之间具有相关性,即
<math id="M3"><msub><mrow><mi>σ</mi></mrow><mrow><mi mathvariant="normal">c</mi></mrow></msub><mo>=</mo><mn mathvariant="normal">0.95</mn><msub><mrow><mi>σ</mi></mrow><mrow><mi mathvariant="normal">p</mi></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=55718001&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=55717998&type=
14.81666565
3.21733332
。依据热本构方程和热加工图,热激活能为376.1
<math id="M4"><mi mathvariant="normal">k</mi><mi mathvariant="normal">J</mi><mo>/</mo><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">l</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=55718007&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=55718003&type=
9.31333351
2.79399991
,应变为0.1时的最佳热加工区域是变形温度为1 110~1 160 ℃,应变速率为0.01~1 s
-1
。
The compression test was conducted on Fe-18Ni-12Cr-3Al alloy by Gleeble-3500 thermal simulator in temperature range of 925~1 175 ℃ and strain of 0.01~10 s
-1
. The true stress-strain curve was analyzed, and the constitutive equation as well as thermal processing map was established. The critical conditions of dynamic recrystallization were investigated by inflection point method based on
θ-σ
curve. The results indicate that the flow stress of Fe-18Ni-12Cr-3Al alloy is increased significantly with increasing in strain rate and decreasing in deformation temperature. There exits a correlation between the critical stress and peak stress for dynamic recrystallization of the alloy, which is
<math id="M5"><msub><mrow><mi>σ</mi></mrow><mrow><mi mathvariant="normal">c</mi></mrow></msub><mo>=</mo><mn mathvariant="normal">0.95</mn><msub><mrow><mi>σ</mi></mrow><mrow><mi mathvariant="normal">p</mi></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=55718027&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=55718024&type=
18.03400040
3.72533321
. According to the constitutive equation and thermal processing map, the activation energy
is 376.1 kJ/mol, and the optimal processing domain are determined in temperature range of 1 110~1 160 ℃ and strain of 0.01~1 s
-1
.
Fe-18Ni-12Cr-3Al合金热变形行为本构方程热加工图
Fe-18Ni-12Cr-3Al AlloyHot Deformation BehaviorConstitutive EquationThermal Processing Map
BRADY M P, YAMAMOTO Y, SANTELLA M L, et al. Composition, microstructure, and water vapor effects on internal/external oxidation of alumina-forming austenitic stainless steels[J]. Oxidation of Metals, 2009, 72(5-6):311-333.
LU Z P, WANG H. Enhanced corrosion resistance of an alumina-forming austenitic steel against molten Al[J]. Oxidation of Metals, 2020, 94(5-6):465-475.
袁智,张海莲,张会杰,等.新型含Al奥氏体耐热钢高温蠕变性能的研究现状[J].金属热处理,2022,47(5):14-24.
WANG M, SUN H Y, ZHOU Z J, et al. Creep behaviors of Fe-18Ni-12Cr based alumina-forming austenitic steels with ultralow carbon[J]. Journal of Materials Science, 2021, 56(7):9 445-9 457.
ZHENG Q, CHEN L, LUO R, et al. Critical dynamic recrystallization model and nucleation mechanisms of an alumina-forming austenitic stainless steel during hot deformation[J]. Transactions of the Indian Institute of Metals, 2020, 73(12):1-9.
ALANEME K K, BABALOLA S A, BODUNRIN M O. On the prediction of hot deformation mechanisms and workability in Al6063/Ni and Al6063/steel composites using hyperbolic-sine constitutive equation[J]. Materials Today: Proceedings, 2020, 38(4):942-948.
ZU G, LU Y, YAN Y, et al. Effect of temperature and strain rate on the hot deformation behaviors of ferritic stainless steel[J]. Metals and Materials International, 2020, 26(2):248-259.
POLIAK E I, JONAS J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1):127-136.
孙亚丽,谢敬佩,郝世明,等.30%SiCp/2024Al复合材料动态再结晶临界条件[J].材料热处理学报,2015,36(9):7-13.
ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-32.
GUO B, JI H, LIU X, et al. Research on flow stress during hot deformation process and processing map for 316LN austenitic stainless steel[J]. Journal of Materials Engineering & Performance, 2012, 21(7):1 455-1 461.
SUN S Y, ZHOU Z J, XU S, et al. Hot deformation behavior and processing map of a Fe-25Ni-16Cr-3Al alumina-forming austenitic steel[J]. Materialwissenschaft und Werkstofftechnik, 2018, 49(9):1 135-1 144.
相关作者
相关机构