基于相场模拟的Inconel 718合金定向凝固CET转变研究
CET of Inconel 718 Alloy during Directional Solidification Based on Phase-field Simulation
- 2024年44卷第3期 页码:323-327
纸质出版日期: 2024-03-20
DOI: 10.15980/j.tzzz.2024.03.006
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2024-03-20 ,
扫 描 看 全 文
董高高,王凯阳,吕少杰,等. 基于相场模拟的Inconel 718合金定向凝固CET转变研究[J]. 特种铸造及有色合金,2024,44(3):323-327.
DONG G G,WANG K Y,LÜ S J,et al. CET of Inconel 718 alloy during directional solidification based on phase-field simulation[J]. Special Casting & Nonferrous Alloys,2024,44(3):323-327.
基于多相场模型对Inconel 718合金定向凝固中的柱状晶向等轴晶转变(CET)过程进行了数值模拟,探究了不同温度梯度下CET的凝固组织,研究了等轴晶、柱状晶和混合晶在凝固过程中的枝晶演化规律,并统计了合金体系中Nb和Cr元素沿高度方向的浓度变化。结果表明,温度梯度从400 K/cm减小到10 K/cm,Inconel 718合金的凝固模式从柱状晶组织转变为等轴晶组织。同时,在凝固过程中,Nb在液相中偏聚,而Cr在固相中偏聚。
The CET (Columnar to equiaxed crystal transition) process of Inconel 718 alloy during directional solidification was numerically simulated based on multi-phase field model. The CET solidification structure was explored under different temperature gradients, and dendrite evolution law of equiaxed, columnar, and mixed crystals were investigated. In addition, the concentration variation patterns of Nb and Cr along height direction were also analyzed. The results indicate that the solidification mode of Inconel 718 alloy is converted from columnar to equiaxed crystals as the temperature gradient decreased from 400 K/cm to 10 K/cm. During the solidification process, Nb is segregated in the liquid phase, while Cr is segregated in the solid phase.
定向凝固Inconel 718合金相场法微观组织演化
Directional SolidificationInconel 718 AlloyPhase-field MethodMicrostructure Evolution
NABAVIZADEH S A, ESHRAGHI M, FELICELLI S D.Three-dimensional phase field modeling of columnar to equiaxed transition in directional solidification of Inconel 718 alloy[J].Journal of Crystal Growth, 2020, 549:125 879.
严志, 王树森, 邹伟, 等.工艺参数对大尺寸K465镍基母合金锭中心缩孔的影响[J].特种铸造及有色合金, 2023, 43(3): 410-414.
NIE P L, OJO O A, LI Z G.Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy[J].Acta Materialia, 2014, 77:85-95.
DONG H B, YANG X L, LEE P D, et al. Simulation of equiaxed growth ahead of an advancing columnar front in directionally solidified Ni-based superalloys[J].Journal of Materials Science, 2004,39(24):7 207-7 212.
李丰范, 匡健隆, 季佳浩, 等.机器学习在金属材料服役性能预测中的应用[J].工程科学学报, 2024, 46(1): 120-136.
丁贤飞, 黄宏, 冯新, 等.定向凝固技术在金属材料凝固与相变过程中的应用[J].特种铸造及有色合金, 2021, 41(8): 925-931.
HUNT J D.Steady state columnar and equiaxed growth of dendrites and eutectic[J].Materials Science and Engineering, 1984, 65(1): 75-83.
BROWN S G R, SPITTLE J A.Computer simulation of grain growth and macrostructure development during solidification[J].Materials Science and Technology, 1989, 5(4): 362-368.
RAPPAZ M, GANDIN C A.Probabilistic modelling of microstructure formation in solidification processes[J].Acta Metallurgica et Materialia, 1993, 41(2): 345-360.
张勇佳, 周建新, 殷亚军, 等.GPU加速的定向凝固枝晶生长的元胞自动机模型[J].特种铸造及有色合金, 2022, 42(6): 740-743.
杨帅, 赵宇宏, 陈伟鹏, 等.Ti-4.5Al合金定向凝固倾斜枝晶生长的相场法模拟[J].特种铸造及有色合金, 2021, 41(6): 769-775.
KANG Y S, JIN Y C, ZHAO Y H, et al.Phase-field simulation of tip splitting in dendritic growth of Fe-C alloy[J].Journal of Iron and Steel Research International, 2017, 24(2): 171-176.
QU T P, WANG D Y, WANG H H, et al.Interface characteristics between TiN and matrix and their effect on solidification structure[J].Journal of Iron and Steel Research International, 2021, 28(9): 1 149-1 158.
LÜ S J, WANG S Z, WU G L, et al.Application of phase-field modeling in solid-state phase transformation of steels[J].Journal of Iron and Steel Research International, 2022, 29(6): 867-880.
WANG K Y, LÜ S J, WU H H, et al.Recent research progress on the phase-field model of microstructural evolution during metal solidification[J].International Journal of Minerals, Metallurgy and Materials, 2023, 30(11): 2 095-2 111.
商春磊, 王传军, 刘文月, 等.数据驱动的文献辅助管线钢产线落锤撕裂韧性[J].工程科学学报, 2023, 45(8): 1 390-1 399.
NOUBARY K D, KELLNER M, STEINMETZ P, et al.Phase-field study on the effects of process and material parameters on the tilt angle during directional solidification of ternary eutectics[J].Computational Materials Science, 2017, 138:403-411.
CHEN M M, DU Q, SHI R H, et al.Phase field simulation of microstructure evolution and process optimization during homogenization of additively manufactured Inconel 718 alloy[J].Frontiers in Materials, 2022(9):11-18.
LÜ S J, WU H H, WANG K Y, et al.Phase field simulation of eutectoid microstructure during austenite-pearlite phase transformation[J].Journal of Materials Research and Technology, 2023, 26: 8 922-8 933.
STEINBACH I, PEZZOLLA F, PRIELER R, et al.A phase field concept for multiphase systems[J].Physica, 1996, D94(3): 135-147.
EIKEN J, BOTTGER B, STEINBACH I.Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application[J].Physical Review, 2006, E73(6): 066 122.
BOTTGER B, EIKEN J, STEINBACH I.Phase field simulation of equiaxed solidification in technical alloys[J].Acta Materialia, 2006, 54(10): 2 697-2 704.
BOUSSINOT G, APEL M, ZIELINSKI J, et al.Strongly out-of-equilibrium columnar solidification during laser powder-bed fusion in additive manufacturing[J].Physical Review Applied, 2019, 11(1): 014 025.
KUMARA C, SEGERATARK A, HANNING F, et al.Microstructure modelling of laser metal powder directed energy deposition of alloy 718[J].Additive Manufacturing, 2019, 25:357-364.
PARK J, KANG J H, OH C S.Phase-field simulations and microstructural analysis of epitaxial growth during rapid solidification of additively manufactured AlSi10Mg alloy[J].Materials & Design, 2020, 195:108 985.
PARK J, OH C S, KANG J H, et al.Solidification and precipitation microstructure simulation of a hypereutectic Al-Mn-Fe-Si Alloy in sei-quantitative phase-field modeling with experimental aid[J].Metals, 2020,10(10): 1 325.
RAHUL M R, SAMAL S, PHANIKUMAR G.Metastable microstructures in the solidification of undercooled high entropy alloys[J].Journal of Alloys and Compounds, 2020, 821:153 488.
DU Q, AZAR A S.Kinetic interface condition phase diagram for the rapid solidification of multi-component alloys with an application to additive manufacturing[J].CALPHAD, 2022, 76:102 365.
LV S J, WU H H, WANG K Y, et al.The microstructure evolution and influence factors of acicular ferrite in low alloy steels[J].Computational Materials Science, 2023, 218:111 989.
TOLOUI M, MILITZER M.Phase field modeling of the simultaneous formation of bainite and ferrite in TRIP steel[J].Acta Materialia, 2018, 144:786-800.
SUWANPINIJ P, RUDNIZKI J, PRAHL U, et al.Investigation of the effect of deformation on γ-α phase transformation kinetics in hot-rolled Dual phase steel by phase field approach[J].Steel Research International, 2009, 80(9): 616-622.
DEEPU M J, PHANIKUMAR G.ICME framework for simulation of microstructure and property evolution during gas metal arc welding in DP980 steel[J].Integrating Materials and Manufacturing Innovation, 2020, 9(3): 228-239.
LÜ S J, WU H H, WANG K Y, et al.The austenite to polygonal ferrite transformation in low-alloy steel: Multi-phase-field simulation[J].Journal of Materials Research and Technology, 2023, 24: 9 630-9 643.
KNAPP G L, RAGHAVAN N, PLOTKOWSKI A, et al.Experiments and simulations on solidification microstructure for Inconel 718 in powder bed fusion electron beam additive manufacturing[J].Additive Manufacturing, 2019, 25:511-521.
WANG X, LIU P W, JI Y, et al.Investigation on microsegregation of IN718 alloy during additive manufacturing via integrated phase-field and finite-element modeling[J].Journal of Materials Engineering and Performance, 2019, 28(2): 657-665.
相关作者
相关机构