气冷搅拌棒流变压铸在高强高导铝合金中的应用
Application of ACSR in Aluminum Alloys with High Thermal Conductivity and Strength
- 2024年44卷第3期 页码:289-293
纸质出版日期: 2024-03-20
DOI: 10.15980/j.tzzz.2024.03.001
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2024-03-20 ,
扫 描 看 全 文
祁明凡,朱国明,康永林,等. 气冷搅拌棒流变压铸在高强高导铝合金中的应用[J]. 特种铸造及有色合金,2024,44(3):289-293.
QI M F,ZHU G M,KANG Y L,et al. Application of ACSR in aluminum alloys with high thermal conductivity and strength[J]. Special Casting & Nonferrous Alloys,2024,44(3):289-293.
开发了一种高效、低成本的铝合金均匀凝固控制制备大体积半固态浆料工艺——气冷搅拌棒工艺(Air-cooled stirring rod process, ACSR),将该制浆工艺与压铸机衔接形成多条一体化智能流变压铸生产线进行铝合金大型薄壁件流变压铸高效制备。目前,ACSR工艺可实现在30 s内制备出40 kg固相率为25%~35%的大体积半固态浆料。该流变压铸工艺已在新能源汽车、5G通信等高品质铝合金大型薄壁件的制备领域得到产业化应用,制备的典型产品包括5G通信用散热壳体、滤波器壳体、天线机箱与新能源汽车用三电结构壳体、端盖、ABS系统阀体等。与传统压铸件相比,新工艺制备的铝合金铸件显微组织细小圆整、表面品质好、内部气孔少,且具有更为优异的力学性能和导热系数。
An efficient and low-cost uniform solidification control process of aluminum alloy was developed for the preparation of large-volume semisolid slurry, which is called air-cooled stirring rod (ACSR) process. The slurrying process was related to die-casting machines to form integrated and intelligent rheological die-casting production lines for high-efficiency rheo-diecasting of large-scale and thin-walled aluminum alloy parts. Nowadays, 40 kg semisolid slurry with a solid fraction of 25%~35% within 30 s was achieved by ACSR process, which achieved industrial application in the formation of large and thin-walled aluminum alloy parts with high quality, such as new energy vehicles and 5G communications. Typical products cover cooling shell for 5G communication, filter shell, antenna case, three-electric structure shell for new energy vehicles, end cover, ABS system valve body, etc. Compared with the traditional die castings, components manufactured by the new process possesses fine and spherical microstructure, satisfied surface quality, less internal pores, as well as desirable mechanical properties and thermal conductivity.
铝合金均匀凝固控制半固态浆料流变压铸
Aluminum AlloyUniform Solidification ControlSemisolid SlurryRheological Die-casting
DONG X X, ZHU X Z, JI S X. Effect of super vacuum assisted high pressure die casting on the repeatability of mechanical properties of Al-Si-Mg-Mn die-cast alloys[J]. Journal of Materials Processing Technology, 2019, 266: 105-113.
LI X B, YU W B, WANG J S, et al. Influence of melt flow in the gating system on microstructure and mechanical properties of high pressure die casting AZ91D magnesium alloy[J]. Materials Science and Engineering, 2018, A736: 219-227.
HU X G, HU Z H, QU W Y, et al. A novel criterion for assessing the processability of semi-solid alloys: The enthalpy sensitivity of liquid fraction[J]. Materialia, 2019, 8: 100 422.
HU X G, ZHU Q, MIDSON S P, et al. Blistering in semi-solid die casting of aluminum alloys and its avoidance[J]. Acta Material, 2017, 124: 446-455.
SEO P K, KIM D U, KANG C G. The effect of the gate shape on the microstructural characteristic of the grain size of Al-Si alloy in the semi-solid die casting process[J]. Materials Science and Engineering, 2007, A(445-446): 20-30.
FAN Z, FANG X, JI S. Microstructure and mechanical properties of rheo-diecast (RDC) aluminium alloys[J]. Materials Science and Engineering, 2005, A412(1-2): 298-306.
MOSTAFA P, JARFORS A E W, WESSEN M. Effect of superheat on melting rate of EEM of Al alloys during stirring using the RheoMetal process[J]. Solid State Phenomena, 2013, 192-193: 392-397.
DOUTRE D, LANGLAIS J, ROY S. The seed process for semi-solid forming[A]. Proceedings of the 8th International Conference on Semi-Solid Processing of Alloys and Composites[C]. Limmasol, Cyprus, 2004.
THANABUMRUNGKUL S, JANUDOM S, BURAPA R, et al. Industrial development of gas induced semi-solid process[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(5): 1 016-1 021.
管仁国, 赵占勇, 钞润泽, 等. 倾斜板振动熔体处理技术研究与应用进展[J]. 特种铸造及有色合金, 2012, 32(3): 230-237.
YANG X J, WANG M, DING L S, et al. Squeeze casting of semisolid A356 alloy[J]. Solid State Phenomena, 2014, 217-218: 436-441.
ZHU W Z, MAO W M, TU Q. Preparation of semi-solid 7075 aluminum alloy slurry by serpentine pouring channel[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(4): 954-960.
李友红,李永坤,李璐,等. 保温时间对A356铝合金半固态组织熟化的影响[J]. 特种铸造及有色合金, 2017, 37(4): 142-145.
杨柳青. AZ91D镁合金TBR流变压铸成形工艺与组织性能研究[D]. 北京: 北京科技大学, 2009.
QI M F, KANG Y L, XU Y Z, et al. A novel rheological high pressure die-casting process for preparing large thin-walled Al-Si-Fe-Mg-Sr alloy with high heat conductivity, high plasticity and medium strength[J]. Materials Science & Engineering, 2020, A776: 139 040.
QI M F,KANG Y L,ZHU G M. Microstructure and properties of rheo-HPDC Al-8Si alloy prepared by air-cooled stirring rod process[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(9): 1 939-1 946.
祁明凡,李静媛,康永林,等. 大体积流变浆料制备与压铸成形一体化工艺及其应用[J]. 精密成形工程, 2020, 12(3): 12-19.
KUBOTA K, MABUCHI M, HIGASHI K. Review processing and mechanical properties of fine-grained magnesium alloys[J]. Journal of Materials Science, 1999, 34: 2 255-2 262.
HU X G, ZHU Q, ATKINSON H V, et al. A time dependent power law viscosity model and its application in modelling semi solid die casting of 319s alloy[J]. Acta Materialia, 2017, 124: 410-420.
QI M F, KANG Y L, LI J Y, et al. Improvement in mechanical, thermal conductivity and corrosion performances of a new high-thermally conductive Al-Si-Fe alloy through a novel R-HPDC process[J]. Journal of Materials Processing Technology, 2020, 279: 116 586.
相关作者
相关机构