Xue Guanxia1, Wang Tongmin1, Su Yanqing2, et al. Numerical Simulation of Meniscus in Induction Solidified Shell Melting[J]. Special Casting & Nonferrous Alloys, 2008,(3):180-182.
Xue Guanxia1, Wang Tongmin1, Su Yanqing2, et al. Numerical Simulation of Meniscus in Induction Solidified Shell Melting[J]. Special Casting & Nonferrous Alloys, 2008,(3):180-182.DOI:
感应凝壳熔炼悬浮驼峰数值模拟研究
摘要
采用计算机模拟方法
定量研究了安培.匝、坩埚开缝数、不同合金以及线圈位置对悬浮驼峰高度的影响。结果发现
悬浮驼峰的高度随着加载安培.匝数值的增大而呈线性增高。每增加1000A.匝
驼峰高度增加4.2mm。开缝数小于40时
悬浮驼峰的高度和坩埚开缝数成正比
坩埚开缝数每增加1
驼峰高度增加0.6mm;开缝数大于40时
悬浮驼峰高度随坩埚缝数增加而缓慢提高。炉料的相对磁导率越小
悬浮驼峰的高度越高;合金的密度越大
悬浮驼峰的高度越低。Ti-48Al-2Cr合金的密度最小
其悬浮驼峰高度最高;Ti-15V-3Cr合金的密度最大
其悬浮驼峰高度就最低。
Abstract
The effects of Amper·coil
slit numbers
alloy and coil position on meniscus height in induction solidified shell melting was simulated by a numerical model.The results reveal that the meniscus height linearly increases with increasing in Amper·coil value
where the meniscus height is increased by 4.2 mm with increasing 1 000 A·coil.Meanwhile
the meniscus height is proportional to slit numbers in the mold with the silt numbers less than 40
in which the meniscus height is increased by 0.6 mm with increasing one slit number
while it is slowly increased with increasing slit numbers when the slit number is more than 40.In addition
the meniscus height increases with the decrease of relative magnetic induction density of the alloy
and it is decreased with the increase of the alloy density.So the meniscus height of Ti-48Al-2Cr alloy melt is the highest in the three alloys.