Zhang Songyang1, Geng Maopeng2, Xie Shuisheng3, et al. Optimization of Processing of Semi-solid Slurry Making Based on Artificial Neural Network[J]. Special Casting & Nonferrous Alloys, 2008,(7):505-507.
Zhang Songyang1, Geng Maopeng2, Xie Shuisheng3, et al. Optimization of Processing of Semi-solid Slurry Making Based on Artificial Neural Network[J]. Special Casting & Nonferrous Alloys, 2008,(7):505-507.DOI:
基于人工神经网络优化的半固态制浆工艺
摘要
研究了机械搅拌制备半固态浆料的工艺因素
获得制备半固态组织的影响规律。在正交试验基础上
利用人工神经网络理论
以半固态组织的固相率和固相尺寸为人工神经网络输入层的2个输入参数
以搅拌速度、搅拌时间、静置时间和浇注温度4个因素为输出层的4个输出参数
建立由半固态组织特点优化机械搅拌工艺的优化模型。研究结果表明
应用本模型优化结果与试验结果一致
可以实现由半固态组织选择半固态制浆工艺
并且只要改变相应的参数
本模型就可以适用于各种半固态制浆工艺过程。
Abstract
Effects of processing parameters on microstructure of semi-solid slurry prepared by mechanical stirring were investigated. The optimized model of processing parameters in mechanical stirring was established by means of artificial neural network in which the solid fraction and solid phase size of the semi-solid structure are taken as input parameters and stirring velocity
stirring time
holding time and pouring temperature as output parameters based on orthogonal testing to prepare desirable semi-solid slurry. The optimized results are well in agreement with experimental ones. Therefore
the artificial neural network model can be used to optimize the processing of the slurring-making during the semi-solid forming. In addition
the model can be used for different slurry-making with altering input parameters.