Research Progress in Influence of Deviation from [001] Orientation Angle on Creep Behavior of Nickel-based Single Crystal Superalloys
- Vol. 44, Issue 3, Pages: 299-304(2024)
Published: 20 March 2024
DOI: 10.15980/j.tzzz.2024.03.003
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 20 March 2024 ,
扫 描 看 全 文
何家宝,王亮,邹明科,等. 偏离[001]取向对镍基单晶高温合金蠕变影响研究进展[J]. 特种铸造及有色合金,2024,44(3):299-304.
HE J B,WANG L,ZOU M K,et al. Research progress in influence of deviation from [001] orientation angle on creep behavior of nickel-based single crystal superalloys[J]. Special Casting & Nonferrous Alloys,2024,44(3):299-304.
镍基单晶高温合金叶片的主要受力方向为[001]晶体学方向,但叶片实际制备时受力方向一般会偏离[001]一定角度。介绍了偏离[001]晶体学取向不同角度的镍基单晶高温合金蠕变行为的研究进展,综述了蠕变行为与偏离[001]取向角度的关系。综合来看,高温条件下,取向偏离角对镍基单晶高温合金蠕变行为的影响较小;中温条件下,较小偏离[001]取向且靠近[011]取向的镍基单晶高温合金蠕变性能比较小偏离[001]取向且靠近[111]方向的更优。
The main stress direction of nickel-based single crystal superalloy blade is [001] crystallographic direction. However, the blade stress direction generally deviates from the [001] orientation at a certain angle during actual preparation. The research progress on the creep behavior of nickel-based single crystal superalloys with different angles deviating from [001] crystallographic orientation was introduced, and the relationship between creep behavior and deviation from [001] crystallographic orientation was summarized. In a word, the orientation deviation angel has little influence on the creep property of superalloy at high temperature, while the creep property of single crystal superalloys with small deviation from [001] orientation and close to [011] orientation is superior to that of ones close to [111] orientation at medium temperature.
镍基单晶高温合金取向偏离度蠕变变形蠕变寿命
Nickel-based Single Crystal SuperalloyOrientation Deviation DegreeCreep DeformationCreep Life
DEMTRDER K, EGGELER G, SCHREUER J. Influence of microstructure on macroscopic elastic properties and thermal expansion of Nickel‐Base superalloys ERBO/1 and LEK94[J]. Materialwissenschaft und Werkstofftechnik, 2015, 46(6): 563-576.
HAN J C. Recent studies in turbine blade cooling[J]. Journal of Rotating Machinery, 2004, 10(6): 443-457.
PRASAD S C, RAJAGOPAL K R, RAO I J. A continuum model for the anisotropic creep of single crystal Nickel-Based superalloys [J]. Acta Mater., 2006, 54(6): 1 487-1 500.
张泽海, 贾玉贤.小偏离度对[001]取向单晶高温合金蠕变性能的影响[J].铸造, 2010, 59(8): 786-789.
MATAN N, COX D C, CARTER P, et al. Creep of CMSX-4 superalloy single crystal: effects of misorientation and temperature[J]. Acta Mater., 1999, 47(5): 1 549-1 563.
LEVERANT G R, KEAR B H. The mechanism of creep in gamma prime precipitation-hardened Nickel-Base alloys at intermediate temperatures[J]. Metallurgical and Materials Transactions, 1970, B1(2): 491-498.
REED R C. The Superalloys Fundamentals and Applications[M]. Cambridge: Cambridge University Press, 2006.
SIMS C T, STOLOFF N S, HAGEL W C. Superalloys II: High-Temperature Materials for Aerospace and Industrial Power[M]. New Jersey: Wiley, 1987.
NABARRO F R N, DEVILLIER H L. The Physics of Creep[M]. London: Taylor and Francis, 1997.
郭建亭.高温合金材料学[M].北京:科学出版社, 2008.
黄乾尧,李汉康.高温合金[M].北京:冶金工业出版社, 2000.
RAFFAITIN A, MONCEAU D, CRABOS F, et al. The effect of thermal cycling on the high-temperature creep behaviour of a single crystal Nickel-based superalloy[J]. Scripta Materialia, 2007, 56(4): 277-280.
张姝. 不同取向单晶镍基合金蠕变期间的组织演化与有限元分析[D].沈阳:沈阳工业大学, 2011.
KHOEI A R, ESHLAGHI G T, SHAHOVEISI S. Atomistic simulation of creep deformation mechanisms in nickel-based single crystal superalloys[J]. Materials Science and Engineering, 2021, A809: 140 977.
YU J, LI J R , ZHAO J Q, et al. Orientation dependence of creep properties and deformation mechanism in DD6 single crystal superalloy at 760 ℃ and 785 MPa[J]. Materials Science and Engineering, 2013, A560(1): 47-53.
SASS V, SCHNEIDER W, MUGHRABI H. On the orientation dependence of the intermediate-temperature creep behavior of a monocrystalline nickel-base superalloy[J]. Scripta Metallurgica et Materialia, 1994, 31(7): 885-890.
MACKAY R A, MAIER R D. The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals[J]. Metallurgical Transactions, 1982, A13(10): 1 747-1 754.
MACKAY R A , MAIER R D .The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals[J].Metallurgical Transactions, 1982, A13(10):1 747-1 754.
HEEP L, RAE C, EGGELER G, et al. Dislocation networks in γ/γ'-microstructures formed during selective laser melting of a Ni-base superalloy[J]. Scripta Materialia, 2020, 190(1): 121-125.
李一飞.一种第三代镍基单晶高温合金蠕变各向异性的研究[D].合肥:中国科学技术大学, 2019.
RAE C M F, REED R C. Primary creep in single crystal superalloys: Origins, mechanisms and effects[J]. Acta Mater., 2007, 55(3): 1 067-1 081.
RAE C M F, MATAN N, REED R C. The role of stacking fault shear in the primary creep of [001]-oriented single crystal superalloys at 750℃ and 750 MPa[J]. Materials Science and Engineering, 2001, A300(1): 125-134.
RAE C M F, MATAN N, COX D C, et al. On the primary creep of CMSX-4 superalloy single crystals[J]. Metallurgical and Materials Transactions, 2000, A31(9): 2 219-2 228.
GUNTURI S S K, MACLACHLAN D W, KNOWLES D M. Anisotropic creep in CMSX-4 in orientations distant from <001>[J]. Materials Science and Engineering, 2000, A289(1-2): 289-298.
岳珠峰,吕震宙,杨治国,等.晶体取向的偏差和随机性对镍基单晶叶片强度与蠕变寿命的影响[J].航空动力学报, 2003, 18(4): 477-480.
CHATTERJEE D, HAZARI N, DAS N, et al. Microstructure and creep behavior of DMS4-type nickel based superalloy single crystals with orientations near <001> and <011> [J]. Materials Science and Engineering, 2010, A528(2), 604-613.
李钢,张思倩,张宗鹏,等.偏离<001>取向15°的三种镍基单晶高温合金试样的中温蠕变变形行为[J].材料研究学报, 2019, 33(12): 892-896.
孙永辉,刘丽荣,彭志江,等.取向偏离度对[001]取向单晶高温合金中温蠕变行为的影响[J].铸造, 2018, 67(8): 707-711.
ZHANG S, JIAN Z, LOU L. Anisotropic creep rupture properties of a nickel-base single crystal superalloy at high temperature[J]. Journal of Materials Science & Technology, 2011, 27(2): 107-112.
KEAR B H, PIEARCEY B J. Tensile and creep properties of single crystals of nickel-base superalloy MAR-M200[J]. Transactions of the Metallurgical Society of the American Institute of Mechanical Engineers, 1967, 239(8): 1 209-1 215.
CARON P, OHTA Y, NAKAGAWA Y G, et al. Creep Deformation Anisotropy in Single Crystal Superalloys[A]. Superalloys[C]. Commonwealth of Pennsylvania: TMS, 1988.
DREW G L, KAKEHI K, REED R C, et al. Single Crystal Superalloys: The Transition From Primary to Secondary Creep[A]. Superalloys[C]. Commonwealth of Pennsylvania: TMS, 2004.
林栋梁,姚德良,林先进,等. 细小γ′粒子的数量和尺寸对提高定向凝固镍基高温合金蠕变强度的作用[J].上海钢研, 1985(5): 118.
SASS V, GLATZEL U, FELLER-KNIEPMEIER M. Anisotropic creep properties of the nickel-base superalloy CMSX-4[J]. Acta Mater., 1996, 44(5): 1 967-1 977.
EPISHIN A, LINK T, BRUCKNER U, et al. Effects of Segregation in Nickel-Base Superalloys: Dendritic Stresses[A]. Superalloys[C]. Commonwealth of Pennsylvania: TMS, 2004.
杜云玲,谭子昊,杨彦红,等.镍基单晶高温合金的小角度偏离[001]取向对蠕变性能的影响[J].稀有金属材料与工程, 2021, 50(4): 1 132-1 138.
WANG X G, LIU J L, JIN T, et al. Creep deformation related to dislocations cutting the γ' phase of a Ni-base single crystal superalloy[J]. Materials Science and Engineering, 2014, A626(25): 406-414.
相关作者
相关机构