Li Hejun, Chen Fuxiao, Yang Yongshun, et al. Prediction of Superplastic Properties of Lead Brass Based on BP Neural Network. [J]. Special Casting & Nonferrous Alloys (6):430-432(2007)
Li Hejun, Chen Fuxiao, Yang Yongshun, et al. Prediction of Superplastic Properties of Lead Brass Based on BP Neural Network. [J]. Special Casting & Nonferrous Alloys (6):430-432(2007)DOI:
Prediction of Superplastic Properties of Lead Brass Based on BP Neural Network
摘要
运用BP神经网络方法建立了铅黄铜超塑性状态下伸长率与变形参数之间的预测模型
采用标准前馈式神经网络原理建立了铅黄铜超塑性拉伸试验参数与其伸长率之间的神经网络模型
以试验数据为样本
对所建模型进行训练
较好的预测了铅黄铜超塑拉伸的伸长率
最大误差只有4·95%。实现了不同变形工艺参数与伸长率之间的非线性映射
也为优化铅黄铜轴承保持架的超塑性成形参数提供理论和试验依据。伸长率预测值与试验结果吻合良好。
Abstract
The predicting model for relationship between elongation and deformation parameters of superplastic lead brass has been established based on standard feed-forward BP neural network.The elongation of the superplastic lead brass can be effectively predicted
such as maximum error lower than 4.81%
by training the established model based on experimental data
realizing the non-linear mapping between different deformation parameters and elongation.The predicted values of the elongation is well in agreement with experimental results
which provides a reference to theory and experiment of superplastic forming parameters of lead brass bearing cage.
关键词
铅黄铜超塑性伸长率BP神经网络预测模型
Keywords
Lead BrassSuperplasticElongationBP Neural NetworkPrediction Model