Al-5Ti-1B-La中La吸附TiAl3表面的第一性原理计算
First-principles Calculation of La Adsorption on TiAl3 Surface in Al-5Ti-1B-La
- 2023年 页码:1-7
网络出版日期: 2023-11-01
DOI: 10.11943/2022-0097
扫 描 看 全 文
浏览全部资源
扫码关注微信
网络出版日期: 2023-11-01 ,
扫 描 看 全 文
李薛松,陈鸿玲,宋莉莉,等. Al-5Ti-1B-La中La吸附TiAl3表面的第一性原理计算[J]. 特种铸造及有色合金,
Li Xuesong,Chen Hongling,Song Lili,et al. First-principles Calculation of La Adsorption on TiAl3 Surface in Al-5Ti-1B-La[J]. Special Casting & Nonferrous Alloys,
采用基于密度泛函理论的第一性原理方法,建立了稀土La在TiAl
3
相择优生长面(001)吸附的9种La//TiAl
3
(001)表面模型和La空位吸附前后TiAl
3
(001)表面堆垛生长表面模型,以此为基础计算并对比了Al-5Ti-1B中间合金中加入La前后TiAl
3
(001)表面模型的吸附能、表面能和态密度等,同时计算了La吸附前后TiAl
3
(001)堆垛生长后表面模型表面能,探讨了Al-5Ti-1B-La中间合金中La对细化相TiAl
3
生长的影响和作用方式。结果表明,La在TiAl
3
(001)表面的9个吸附位置均能自主发生强化学表面吸附,其中Al-TiAl
3
(001)表面空位(V2)吸附La后表面能降低幅度最大,吸附能最小,吸附结构最稳定; TiAl
3
(001)表面空位吸附(V2)La后堆垛生长是趋于单位面积内表面能增加,La吸附后的TiAl
3
(001)表面堆垛生长不稳定,减缓了TiAl
3
(001)面的生长速度,说明La对TiAl
3
相的生长有较强的抑制作用。试验表明,La加入Al-5Ti-1B中间合金后,细化相TiAl
3
的平均尺寸由26.47 μm降低到14.52 μm,TiAl
3
相分布较均匀,说明La的加入有利于阻碍TiAl
3
的长大,与模拟结果一致。
9 kinds of La//TiAl
3
(001) surface configurations adsorbed by La on the preferred growth surface of TiAl
3
(001) and stacking growth configuration of TiAl
3
(001) surface before and after La vacancy adsorption were established by first-principles method. On this basis, the adsorption energy, surface energy and state density of TiAl
3
(001) surface configuration in the Al-5Ti-1B-La master alloy before and after La addition were calculated comparatively. Meanwhile, the effect of La on the growth of the refined TiAl
3
phase as well as the action method were explored. The results indicate that La can spontaneously undergo strong chemical surface adsorption on the nine adsorption sites of the TiAl
3
(001) surface, where the surface energy of Al-TiAl
3
(001) surface vacancies (V2) site after adsorbing La has the largest reduction, and the adsorption energy has the smallest reduction,with the most stable adsorption structure per unit area. The stacking growth of TiAl
3
(001) after La adsorption on the surface vacancies (V2) site tends to an increase of surface energy and unstable, which retards the growth of TiAl
3
(001) surface, indicating that La strongly inhibits the growth of TiAl
3
phase. The test reveals that after adding La to the Al-5Ti-1B master alloy, the average size of the refined TiAl
3
phase is decreased from 26.47 to 14.52 μm, with relatively uniform distribution, proving that La addition is beneficial to hinder the growth of TiAl
3
, which is consistent with the simulation results.
Al-5Ti-1B-La稀土LaTiAl3(001)表面吸附第一性原理
Al-5Ti-1B-LaRare Earth LaTiAl3(001)Surface AdsorptionFirst Principles
GUAN R G, TIE D. A Review on grain refinement of aluminum alloys: Progresses, challenges and prospects[J]. Acta Metallurgica Sinica, 2017(5): 409-432.
HOTEA V, JUHASZ J, CADAR F. Grain refinement of 7075Al alloy microstructures by inoculation with Al-Ti-B master alloy[C]. Iop Conference, 2017, 200: 012 029.
WEI Z J. Optimization of processing parameters for preparation of Al-3Ti-1B grain refiner[J]. Transactions of Nonferrous Metals Society of China, 2009.
SOFYAN BT, KHARISTAL DJ, TRIJATI L, et al. Grain refinement of AA333 aluminium cast alloy by Al-Ti granulated flux[J]. Materials & Design, 2010, 31(S1): S36-S43.
JOHNSSON M, JANSSON K. Study of Al1-xTixB2 particles extracted from Al-Ti-B alloys[J]. Zeitschrift fur Metallkunde, 1998, 89(6): 394-398.
韩延峰, 疏达, 王俊, 等. 超声制备Al-5Ti-1B中间合金中TiB2粒子尺寸分布及其晶粒细化性能[J]. 上海交通大学学报, 2007, 41(4): 5.
闫敬明, 黎平, 左孝青, 等. Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制[J]. 材料导报, 2020, 34(9): 7.
张作贵,刘相法,边秀房. TiB2分布形态对AlTi5B合金细化特性的影响[J]. 特种铸造及有色合金, 1999(5): 12-13.
陈鸿玲, 傅高升, 颜文煅. Al-5Ti-1B-0.5RE对A356铝合金的细化效果[J]. 特种铸造及有色合金, 2008, 28(10): 795-797.
ZHANG G J, WU Y Y, YANG H B, et al. Influence of anti Zr-poisoning Al-Ti-B-C master alloy on mechanical properties of 7050 aluminum alloy[J]. Journal of Materials Engineering, 2017, 45(4): 1-8.
陈鸿玲, 傅高升, 黄利光, 等. AlTiBRE中间合金中各元素含量优化及RE作用分析[J]. 铸造, 2008, 57(5): 436-441.
付莹, 付连生, 张宇博, 等. La对氟盐法制备Al-Ti-B-La反应机理及其细化效果的影响[J]. 中国有色金属学报, 2020, 30(8): 1 781-1 790.
TENGFEI M A, ZIYONG C, ZUOREN N, et al. Microstructure of Al-Ti-B-Er refiner and its grain refining performance[J]. Journal of Rare Earths, 2013, 31(6): 622-627.
HU H, HU ZL, WEI LJ, et al. The effects of rare earth element on the Al-Ti-B master alloy second phase[J]. Applied Mechanics & Materials, 2014, 574: 380-385.
剌军, 尹建宝, 李逸泰, 等. Al-5Ti-1B-Ce与Al-5Ti-1B-La中间合金对工业纯铝晶粒细化效果的对比[J]. 轻合金加工技术, 2015, 43(11): 30-34.
PENG J, ZHANG J, HU X, et al. Grain refining effects of the melt thermal-rate treatment and Al-Ti-B-Y refiner in as-cast Al-9Si-0.5Mg alloy[J]. Materials Research Express, 2018, 5: 66 520.
方正, 秦林, 丁俭, 等. 快速凝固Al-Ti-B-Sc对A356.2铝合金的晶粒细化作用[J]. 河北工业大学学报, 2014, 43(2): 61-65.
LIU G L, DING R, GUAN Y P, et al. Effects of Al-Ti-B-RE + Al-10Sr master alloys on refinement and modification performances of A356 alloy[C]. IOP Conference Series Earth and Environmental Science, 2018, 113: 012 034.
WANG Z J, SI N C. Synthesis and refinement performance of the novel Al-Ti-B-RE master alloy grain refiner[J]. Rare Metal Materials and Engineering, 2015, 44(12): 2970-2975.
高倩倩, 傅高升. 生产条件下自制细化剂Al-5Ti-1B-0.5RE细化效果试验[J]. 中国铸造装备与技术, 2014(4): 61-66.
张凤春, 李春福, 孙延安, 等. 硫在Fe(111)面吸附的密度泛函研究[J]. 原子与分子物理学报, 2013, 30(2): 328-336.
李松. 铝硅合金中共晶Si Sr变质机理的理论和实验研究[D].南昌:南昌大学, 2016.
何建生. Al-4Ti中间合金中TiAl3相的形貌演变研究[D].重庆大学, 2017.
CLARK S J, SEGALLII M D, PICKARDII C J, et al. First principles methods using CASTEP[J]. Zeitschrift für Kristallographie - Crystalline Materials, 2005, 220(5):567-570.
丁彦红. 铝和铝合金晶粒细化机制的第一性原理验证[D].河北秦皇岛:燕山大学, 2016.
LI J, YANG Y Q, LUO X. First-principles study of the Al(001)/Al3Ti(001) interfacial properties[J]. Computational Materials Science, 2012, 62: 136-141.
蒙大桥, 罗文华, 李赣, 等. Pu(100)表面吸附CO2的密度泛函研究[J]. 物理学报, 2009, 58(12): 8 224-8 229.
相关作者
相关机构